### **Technical Reference**

# **Tektronix**

DPO4000 Series
Digital Phosphor Oscilloscopes
Specifications and Performance Verification
071-1843-02

This document supports firmware version 1.00 and above for DPO4000 Series instruments only.

#### Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX, TEK, and TekVPI are registered trademarks of Tektronix, Inc.

#### **Contacting Tektronix**

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

## **Table of Contents**

| General Safety Summary              | j  |
|-------------------------------------|----|
| Specifications                      | 1. |
| Performance Verification            | 2  |
| Test Record                         | 2  |
| Performance Verification Procedures | 2- |

### **List of Tables**

| Table 1-1: Channel input and vertical specifications        | 1-1  |
|-------------------------------------------------------------|------|
| Table 1-2: Horizontal and acquisition system specifications | 1-7  |
| Table 1-3: Trigger specifications                           | 1-7  |
| Table 1-4: Display specifications                           | 1-12 |
| Table 1-5: Input/Output port specifications                 | 1-12 |
| Table 1-6: Power source specifications                      | 1-13 |
| Table 1-7: Data storage specifications                      | 1-13 |
| Table 1-8: Environmental specifications                     | 1-13 |
| Table 1-9: Mechanical specifications                        | 1-14 |
| Table 1-10: Safety certification                            | 1-14 |
| Table 1-11: Electromagnetic compatibility (EMC)             | 1-15 |

### **General Safety Summary**

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

#### To Avoid Fire or Personal Injury

**Use Proper Power Cord.** Use only the power cord specified for this product and certified for the country of use.

**Connect and Disconnect Properly.** Do not connect or disconnect probes or test leads while they are connected to a voltage source.

**Ground the Product.** This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

**Observe All Terminal Ratings.** To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

The inputs are not rated for connection to mains or Category II, III, or IV circuits.

Connect the probe reference lead to earth ground only.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

**Do Not Operate Without Covers.** Do not operate this product with covers or panels removed.

**Do Not Operate With Suspected Failures.** If you suspect there is damage to this product, have it inspected by qualified service personnel.

**Avoid Exposed Circuitry.** Do not touch exposed connections and components when power is present.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

**Keep Product Surfaces Clean and Dry.** 

**Provide Proper Ventilation.** Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

#### **Terms in this Manual**

These terms may appear in this manual:



**WARNING.** Warning statements identify conditions or practices that could result in injury or loss of life.



**CAUTION.** Caution statements identify conditions or practices that could result in damage to this product or other property.

# Symbols and Terms on the Product

These terms may appear on the product:

Push button

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

The following symbols may appear on the product:



# **Specifications**

### **Specifications**

This chapter contains specifications for the DPO4000 Series oscilloscopes. All specifications are guaranteed unless noted as "typical." Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the  $\nu$  symbol are checked in *Performance Verification*.

All specifications apply to all DPO4000 models unless noted otherwise. To meet specifications, two conditions must first be met:

- The oscilloscope must have been operating continuously for twenty minutes within the operating temperature range specified.
- You must perform the Signal Path Compensation (SPC) operation described in the *DPO4000 Series Digital Phospor Oscilloscopes User Manual* prior to evaluating specifications. If the operating temperature changes by more than 10 °C (18 °F), you must perform the SPC operation again.

Table 1-1: Channel input and vertical specifications

| Characteristic                       | Description                                                                                                                                                                                 |                                    |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Number of input                      | DPO4032                                                                                                                                                                                     | DPO4104, DPO4054, DPO4034          |  |
| channels                             | 2 analog, digitized simultaneously                                                                                                                                                          | 4 analog, digitized simultaneously |  |
| Input coupling                       | DC, AC, or GND                                                                                                                                                                              |                                    |  |
|                                      | GND coupling approximates ground reference by measuring the CVR output set to GND. The signal being measured on the BNC is not disconnected from the channel's input load.                  |                                    |  |
| Input resistance                     | 1 M $\Omega$ or 50 $\Omega$                                                                                                                                                                 |                                    |  |
| selection                            | DPO4104: Bandwidth is limited to 500 MHz with 1 $\mbox{M}\Omega$ impedance selected                                                                                                         |                                    |  |
| ✓ Input impedance,                   | 1 M $\Omega$ ±1% in parallel with 13 pF ±2                                                                                                                                                  | 2 pF                               |  |
| DC coupled                           | 50 $\Omega$ ±1% DPO4104: VSWR $\leq$ 1.5:1 from DC to 1 GHz, typical DPO4054: VSWR $\leq$ 1.5:1 from DC to 500 MHz, typical DPO4034, DPO4032: VSWR $\leq$ 1.5:1 from DC to 350 MHz, typical |                                    |  |
| Maximum input voltage (50 $\Omega$ ) | $5 V_{RMS}$ with peaks $\leq \pm 20 V$ (DF $\leq 6.25\%$ )                                                                                                                                  |                                    |  |
| Maximum input voltage (1 $M\Omega$ ) | The maximum input voltage at the BNC, between the center conductor and shield is 400 $V_{peak}$ (DF $\leq$ 39.2%), 250 $V_{RMS}$ to 130 kHz derated to 2.6 $V_{RMS}$ at 500 MHz.            |                                    |  |
|                                      | The maximum transient withstand voltage is ±800 V <sub>peak</sub> .                                                                                                                         |                                    |  |

Table 1-1: Channel input and vertical specifications (Cont.)

| Characteristic                               | Description                                                                                                                                                                                               |                                                                                                                                             |                                           |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| ✓ DC Balance                                 | 0.2 div with the input DC-50 $\Omega$ coupled and 50 $\Omega$ terminated                                                                                                                                  |                                                                                                                                             |                                           |  |
|                                              | 0.25 div at 2 mV<br>terminated                                                                                                                                                                            | //div with the input [                                                                                                                      | OC-50 $\Omega$ coupled and 50 $\Omega$    |  |
|                                              | 0.5 div at 1 mV/<br>terminated                                                                                                                                                                            | div with the input Do                                                                                                                       | C-50 $\Omega$ coupled and 50 $\Omega$     |  |
|                                              | 0.2 div with the                                                                                                                                                                                          | input DC-1 MΩ cou                                                                                                                           | pled and 50 $\Omega$ terminated           |  |
|                                              | 0.3 div at 1 mV/div with the input DC-1 M $\Omega$ coupled and 50 $\Omega$ terminated                                                                                                                     |                                                                                                                                             |                                           |  |
| Delay between chan-<br>nels, full bandwidth, | ≤100 ps between DC coupling.                                                                                                                                                                              | en any two channels                                                                                                                         | with input impedance set to 50 $\Omega$ , |  |
| typical                                      |                                                                                                                                                                                                           | Note: all settings in the instrument can be manually time aligned using the Probe Deskew function from -100 ns to +100 ns with a resolution |                                           |  |
| Deskew range                                 | -100 ns to +100                                                                                                                                                                                           | ns with a resolution                                                                                                                        | n of 20 ps                                |  |
| Crosstalk (channel isolation), typical       | ≥ 100:1 at ≤ 100 MHz and ≥ 30:1 at >100 MHz up to the rated bandwidth for any two channels having equal Volts/Div settings                                                                                |                                                                                                                                             |                                           |  |
| TekVPI Interface                             | The probe interface allows installing, powering, compensating, a controlling a wide range of probes offering a variety of features.                                                                       |                                                                                                                                             |                                           |  |
|                                              | The interface is available on all front panel inputs including Aux In. Aux In only provides 1 $\text{M}\Omega$ input impedance and does not offer 50 $\Omega$ as do the other input channels.             |                                                                                                                                             |                                           |  |
| Total probe power                            | DPO4032, DPC                                                                                                                                                                                              | )4034, DPO4054: 50                                                                                                                          | ) W                                       |  |
|                                              | DPO4104: 50 W with a derating of 0.8 W/°C for ambient temperatures ≥ 25 °C                                                                                                                                |                                                                                                                                             |                                           |  |
| Probe power per                              | Voltage                                                                                                                                                                                                   | Max Amperage                                                                                                                                | Voltage Tolerance                         |  |
| channel                                      | 5 V                                                                                                                                                                                                       | 50 mA (250 mW)                                                                                                                              | ±5%                                       |  |
|                                              | 12 V 2 A (24 W) ±10%                                                                                                                                                                                      |                                                                                                                                             |                                           |  |
| Number of digitized                          | 8 bits                                                                                                                                                                                                    |                                                                                                                                             |                                           |  |
| bits                                         | Displayed vertically with 25 digitization levels (DL) per division, 10.24 divisions dynamic range.                                                                                                        |                                                                                                                                             |                                           |  |
|                                              | "DL" is the abbreviation for "digitization level." A DL is the smallest voltage level change that can be resolved by an 8-bit A-D Converter. This value is also known as the LSB (least significant bit). |                                                                                                                                             |                                           |  |
| Sensitivity range                            | 1 ΜΩ                                                                                                                                                                                                      |                                                                                                                                             | 50 Ω                                      |  |
| (coarse)                                     | 1 mV/div to 10 v<br>sequence                                                                                                                                                                              | V/div in a 1-2-5                                                                                                                            | 1 mV/div to 1 V/div in a 1-2-5 sequence   |  |

Table 1-1: Channel input and vertical specifications (Cont.)

| Characteristic                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                            |                            |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Sensitivity range (fine)                                  | 1 mV/div to 5 V/div: <-50% to >+50% of selected setting, 1 M $\Omega$ 10 V/div: <-50% to 0%, 1 M $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                            |                            |
|                                                           | 1 mV/div to 500 mV/div: <-50% to >+50% of selected setting, 50 $\Omega$ 1 V/div: <-50% to 0%, 50 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                            |                            |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Allows continuous adjustment from 1 mV/div to 10 V/div, 1 M $\Omega$ . Allows continuous adjustment from 1 mV/div to 1 V/div, 50 $\Omega$ .                                |                            |                            |
| Sensitivity resolution (fine), typical                    | ≤ 1% of currer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt setting                                                                                                                                                                 |                            |                            |
| Position range                                            | ±5 divisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            |                            |                            |
| $ ightharpoonup$ Analog bandwidth, 50 $\Omega$            | bandwidth sele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The limits stated below are for ambient temperature of ≤30 °C and the bandwidth selection set to FULL. Reduce the upper bandwidth frequency by 1% for each °C above 30 °C. |                            |                            |
|                                                           | Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 mV/div to<br>1 V/div                                                                                                                                                     | 2 mV/div to<br>4.98 mV/div | 1 mV/div to<br>1.99 mV/div |
|                                                           | DPO4104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC to 1 GHz                                                                                                                                                                | DC to 350 MHz              | DC to<br>200 MHz           |
|                                                           | DPO4054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC to 500 MHz                                                                                                                                                              | DC to 350 MHz              | DC to<br>200 MHz           |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                            |                            |
|                                                           | Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.99 V/d DC to 350 MHz DC to                                                                                                                                               |                            | 1 mV/div to<br>1.99 V/div  |
|                                                           | DPO4034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            |                            | DC to<br>200 MHz           |
|                                                           | DPO4032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC to 350 MHz                                                                                                                                                              |                            | DC to<br>200 MHz           |
| $ ightharpoonup$ Analog bandwidth, 1 M $\Omega$ , typical | The limits stated below are for ambient temperature of $\leq$ 30 °C and the bandwidth selection set to FULL. Reduce the upper bandwidth frequency by 1% for each °C above 30 °C.  For DPO4104 and DPO4054 bandwidth verification, 380 MHz, rather than 500 MHz, is used due to an impedance mismatch between the signal generator and the oscilloscope. Passing this test with a 380 MHz signal verifies 500 MHz performance on the 1 M $\Omega$ path on models DPO4104 and DPO4054 using a P6139A probe. |                                                                                                                                                                            |                            |                            |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                            | between the with a 380 MHz |
|                                                           | Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 mV/div to<br>10 V/div                                                                                                                                                    | 2 mV/div to<br>4.98 mV/div | 1 mV/div to<br>1.99 mV/div |
|                                                           | DPO4104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC to 380 MHz                                                                                                                                                              | DC to 300 MHz              | DC to<br>175 MHz           |
|                                                           | DPO4054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC to 380 MHz                                                                                                                                                              | DC to 300 MHz              | DC to<br>175 MHz           |

Table 1-1: Channel input and vertical specifications (Cont.)

| Characteristic                                              | Description   |                                                                          |                                                     |                              |
|-------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|
|                                                             | Instrument    | 5 mV/div to<br>10 V/div                                                  | 2 mV/div to<br>4.98 mV/div                          | 1 mV/div to<br>1.99 mV/div   |
|                                                             | DPO4034       | DC to 350 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
|                                                             | DPO4032       | DC to 350 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
| Analog bandwidth,<br>1 MΩ with P6139A<br>10X Probe, typical | bandwidth se  | ted below are for amb<br>lection set to FULL. Ro<br>1% for each °C above | educe the upper ba                                  |                              |
|                                                             | Instrument    | 50 mV/div to<br>100 V/div                                                | 20 mV/div to<br>49.8 mV/div                         | 10 mV/div to<br>19.9 mV/div  |
|                                                             | DPO4104       | DC to 500 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
|                                                             | DPO4054       | DC to 500 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
|                                                             |               |                                                                          |                                                     |                              |
|                                                             | Instrument    | 50 mV/div to<br>100 V/div                                                | 20 mV/div to<br>49.8 mV/div                         | 10 mV/div to<br>19.9 mV/div  |
|                                                             | DPO4104       | DC to 350 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
|                                                             | DPO4054       | DC to 350 MHz                                                            | DC to 300 MHz                                       | DC to<br>175 MHz             |
| Calculated rise time, typical                               | oscilloscope. | s calculated by measu<br>The formula accounts<br>ndependent of the rise  | for the rise time co                                | ntribution of th             |
|                                                             | Instrument    | 50 Ω: 1 mV/div<br>to 1.99 mV/div                                         | 50 Ω: 2 mV/div<br>to 4.99 mV/div                    | 50 Ω: 5 mV,<br>div to 1 V/di |
|                                                             | DPO4104       | 1.75 ns                                                                  | 778 ps                                              | 350 ps                       |
|                                                             | DPO4054       | 1.75 ns                                                                  | 778 ps                                              | 700 ps                       |
|                                                             | DPO4034       | 1.75 ns                                                                  | 1 ns                                                | 1 ns                         |
|                                                             | DPO4032       | 1.75 ns                                                                  | 1 ns                                                | 1 ns                         |
|                                                             | Instrument    | 1 MΩ (P6139A<br>probe): 10 mV/div<br>to 19.9 mV/div                      | $I~M\Omega~(P6139A~probe): 20~mV/div~to~100~V/div~$ | ,                            |
|                                                             | DPO4104       | 1 ns                                                                     | 700 ps                                              |                              |
|                                                             | DPO4054       | 1 ns                                                                     | 700 ps                                              |                              |
|                                                             | DPO4034       | 1 ns                                                                     | 1 ns                                                |                              |
|                                                             |               |                                                                          |                                                     |                              |

Table 1-1: Channel input and vertical specifications (Cont.)

| Characteristic                                                  | Description                                                                                                                       |                                                                                              |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Analog bandwidth selections                                     | 20 MHz, 250 MHz and Full (all models)                                                                                             |                                                                                              |  |  |
| Lower frequency limit,                                          | < 10 Hz when AC to 1 M $\Omega$ coupled                                                                                           |                                                                                              |  |  |
| AC coupled, typical                                             | The AC coupled lower frequency limits are reduced by a factor of 10 when 10X passive probes are used.                             |                                                                                              |  |  |
| Upper frequency limit,<br>250 MHz bandwidth<br>limited, typical | 250 MHz, ±20% (all models)                                                                                                        | 250 MHz, ±20% (all models)                                                                   |  |  |
| Upper frequency limit,<br>20 MHz bandwidth<br>limited, typical  | 20 MHz, ±20% (all models)                                                                                                         |                                                                                              |  |  |
| ✓ DC gain accuracy                                              | For 1 M $\Omega$ path:                                                                                                            | For 50 $\Omega$ path:                                                                        |  |  |
|                                                                 | ±1.5%, derated at 0.100%/°C above 30 °C                                                                                           | ±1.5%, derated at 0.050%/°C above 30 °C                                                      |  |  |
|                                                                 | ±3.0% Variable Gain, derated at 0.100%/°C above 30 °C                                                                             | ±3.0% Variable Gain, derated at 0.050%/°C above 30 °C                                        |  |  |
| DC voltage measure-<br>ment accuracy                            | Measurement type                                                                                                                  | DC Accuracy (in volts)                                                                       |  |  |
| Sample acquisition mode, typical                                | Any sample                                                                                                                        | ±[DC gain accuracy ×   reading - (offset - position)   + Offset Accuracy +0.15 div + 0.6 mV] |  |  |
|                                                                 | Delta volts between any two<br>samples acquired with the same<br>oscilloscope setup and ambient<br>conditions                     | ±[DC gain accuracy ×   reading  <br>+ 0.15 div + 1.2 mV]                                     |  |  |
|                                                                 | Note: Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/div term. |                                                                                              |  |  |

Table 1-1: Channel input and vertical specifications (Cont.)

| Characteristic           | Description                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                   |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|--|
| Average acquisition mode | Average of ≥ 16 waveforms                                                                                                                                                                                                                                                                                                                                                                                 | ±[DC gain accuracy ×   reading - (offset - position)   + Offset Accuracy + 0.1 div] |                   |  |
|                          | Delta Volts between any two<br>averages of ≥16 waveforms<br>acquired with the same oscillo-<br>scope setup and ambient condi-<br>tions                                                                                                                                                                                                                                                                    | ±[DC gain accuracy ×   reading   + 0.05 div]                                        |                   |  |
|                          | Note: Offset, position, and the constal volts by multiplying by the appropriate                                                                                                                                                                                                                                                                                                                           |                                                                                     | be converted to   |  |
|                          | The basic accuracy specification applies directly to any sample a following measurements: High, Low, Max, Min, Mean, Cycle Mea and Cycle RMS. The delta volt accuracy specification applies to calculations involving two of these measurements.  The delta volts (difference voltage) accuracy specification applies the following measurements: Positive Overshoot, Negative Over Pk-Pk, and Amplitude. |                                                                                     | ycle Mean, RMS,   |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                   |  |
| Offset ranges            | Volts/div setting                                                                                                                                                                                                                                                                                                                                                                                         | Offset range                                                                        |                   |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                           | 1 M $\Omega$ input                                                                  | 50 $\Omega$ input |  |
|                          | 1 mV/div to 50 mV/div                                                                                                                                                                                                                                                                                                                                                                                     | ±1 V                                                                                | ±1 V              |  |
|                          | 50.5 mV/div to 99.5 mV/div                                                                                                                                                                                                                                                                                                                                                                                | ±0.5 V                                                                              | ±0.5 V            |  |
|                          | 100 mV/div to 500 mV/div                                                                                                                                                                                                                                                                                                                                                                                  | ±10 V                                                                               | ±10 V             |  |
|                          | 505 mV/div to 995 mV/div                                                                                                                                                                                                                                                                                                                                                                                  | ±5 V                                                                                | ±5 V              |  |
|                          | 1 V/div to 5 V/div <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                           | ±100 V                                                                              | ±5 V              |  |
|                          | 5.05 V/div to 10 V/div <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                       | ±50 V                                                                               | Not applicable    |  |
|                          | Input Signal cannot exceed Max Input Voltage for the 50 $\Omega$ input path. Refer to the Max Input Voltage specification for more information.                                                                                                                                                                                                                                                           |                                                                                     |                   |  |
| Offset accuracy          | ±[0.005 ×   offset - position   + DC Balance]                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |                   |  |
|                          | Note: Both the position and constant offset term must be convert volts by multiplying by the appropriate volts/div term.                                                                                                                                                                                                                                                                                  |                                                                                     |                   |  |

 $<sup>^{1}~~</sup>$  For 50  $\Omega$  path, 1 V/div is the maximum vertical setting.

Table 1-2: Horizontal and acquisition system specifications

| Characteristic                                           | Description                                                                                                   |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ✓ Long-term sample rate and delay time accuracy          | ±5 ppm over any ≥1 ms time interval                                                                           |
| Seconds/Division range                                   | DPO4104: 400 ps/div to 1,000 sec/div in a 1-2-4 sequence DPO4054, DPO4034, DPO4032: 1 ns/div to 1,000 sec/div |
| Peak Detect or Enve-                                     | Minimum pulse width                                                                                           |
| lope mode pulse response, typical                        | DPO4104: > 200 ps<br>DPO4054, DPO4034, DPO4032: > 400 ps                                                      |
| Sample-rate range                                        | DPO4104: 5 GS/s-0.1 S/s<br>DPO4054, DPO4034, and DPO4032: 2.5 GS/s-0.1 S/s                                    |
| Record length range                                      | 10 M, 1 M, 100 k, 10 k, 1 k                                                                                   |
| Maximum update rate                                      | Maximum triggered acquisition rate: 3,700 wfm/s                                                               |
| Aperture Uncertainty, typical                            | $\leq$ (3 ps + 0.1 ppm * record duration) <sub>RMS</sub> , for records having duration $\leq$ 1 minute        |
| Number of Wave-<br>forms for Average<br>Acquisition Mode | 2 to 128 waveforms  Default of 16 waveforms                                                                   |

Table 1-3: Trigger specifications

| Characteristic                                             | Description                                                                                                                                                              |                                    |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Aux In (External) trig-<br>ger maximum input<br>voltage    | The maximum input voltage at the BNC, between center conductor and shield, is 400 $V_{peak}$ (DF $\leq$ 39.2%), 250 $V_{RMS}$ to 2 MHz derated to 5 $V_{RMS}$ @ 500 MHz. |                                    |  |
|                                                            | The maximum transient withstand v                                                                                                                                        | oltage is ±800 V <sub>peak</sub> . |  |
| Aux In (External) trig-<br>ger input impedance,<br>typical | 1 M $\Omega$ ±1% in parallel with 13 pF ±2 pF                                                                                                                            |                                    |  |
| Aux In (External) trig-<br>ger bandwidth, typical          | 250 MHz ±20%                                                                                                                                                             |                                    |  |
| Trigger bandwidth,<br>Edge, Pulse, and<br>Logic, typical   | DPO4104: 1 GHz<br>DPO4054: 500 MHz<br>DPO4034, DPO4032: 350 MHz                                                                                                          |                                    |  |
| Time accuracy for                                          | Time range                                                                                                                                                               | Accuracy                           |  |
| Pulse, Glitch, Time-<br>out, or Width trigger-             | 1 ns to 500 ns                                                                                                                                                           | ±(20% of setting + 0.5 ns)         |  |
| ing                                                        | 520 ns to 1 s                                                                                                                                                            | ±(0.01% of setting + 100 ns)       |  |

Table 1-3: Trigger specifications (Cont.)

| Characteristic                                                                             | Description                                                              |                                                                                                                |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Edge-type trigger                                                                          | Trigger Source                                                           | Sensitivity                                                                                                    |  |
| sensitivity, DC coupled, typical                                                           | Any input channel                                                        | 0.40 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth                                      |  |
|                                                                                            | Aux in (External)                                                        | 200 mV from DC to 50 MHz, increasing to 500 mV at 250 MHz                                                      |  |
|                                                                                            | Line                                                                     | Fixed                                                                                                          |  |
| Edge trigger                                                                               | Trigger Couling                                                          | Typical Sensitivity                                                                                            |  |
| sensitivity, not DC coupled, typical                                                       | NOISE REJ                                                                | 2.5 times the DC-coupled limits                                                                                |  |
| coupled, typical                                                                           | HF REJ                                                                   | 1.5 times the DC-coupled limit<br>from DC to 50 kHz. Attenuates<br>signals above 50 kHz                        |  |
|                                                                                            | LF REJ                                                                   | 1.5 times the DC-coupled limits<br>for frequencies above 50 kHz.<br>Attenuates signals below 50 kHz            |  |
| Trigger level ranges                                                                       | Source                                                                   | Sensitivity                                                                                                    |  |
|                                                                                            | Any input channel                                                        | ±8 divisions from center of screen, ±8 divisions from 0 V when vertical LF reject trigger coupling is selected |  |
|                                                                                            | Aux In (External)                                                        | ±8 V                                                                                                           |  |
|                                                                                            | Line                                                                     | Not applicable                                                                                                 |  |
|                                                                                            | The line trigger level is fixed at about 50% of the line voltage.        |                                                                                                                |  |
|                                                                                            | This specification applies to logic a                                    | nd pulse thresholds.                                                                                           |  |
| Lowest frequency for<br>successful operation<br>of "Set Level to 50%"<br>function, typical | 45 Hz                                                                    |                                                                                                                |  |
| Trigger level                                                                              | For signals having rise and fall times ≥ 10 ns, the limits are as follow |                                                                                                                |  |
| accuracy, DC coupled typical                                                               | Source                                                                   | Range                                                                                                          |  |
| rypioui                                                                                    | Any channel                                                              | ±0.20 divisions                                                                                                |  |
|                                                                                            | Aux In (external trigger)                                                | ±(10% of setting + 25 mV)                                                                                      |  |
|                                                                                            | Line                                                                     | Not applicable                                                                                                 |  |
| Trigger holdoff range                                                                      | 20 ns minimum to 8 s maximum                                             |                                                                                                                |  |

Table 1-3: Trigger specifications (Cont.)

| Characteristic                                                                                         | Description                                                                                                                                                                                                                |                                                                                                          |                                                      |                                                  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| Video-type trigger<br>sensitivity, typical                                                             | The limits for both delayed and main trigger are as follows:                                                                                                                                                               |                                                                                                          |                                                      |                                                  |
|                                                                                                        | Source                                                                                                                                                                                                                     |                                                                                                          | Sensitivity                                          |                                                  |
|                                                                                                        | Any input channel                                                                                                                                                                                                          |                                                                                                          | 0.6 to 2.5 divisions of video sync tip               |                                                  |
|                                                                                                        | Aux In (Externa                                                                                                                                                                                                            | al)                                                                                                      | Video not supporte<br>In (External) input            | ed through Aux                                   |
| Video-type trigger formats and field rates                                                             | Triggers from negative sync composite video, field 1 or field 2 for interlaced systems, on any field, specific line, or any line for interlaced or non-interlaced systems. Supported systems include NTSC, PAL, and SECAM. |                                                                                                          |                                                      |                                                  |
| Logic-type or logic<br>qualified trigger or<br>events-delay sensitivi-<br>ties, DC coupled,<br>typical | 1.0 division from DC to maximum bandwidth                                                                                                                                                                                  |                                                                                                          |                                                      |                                                  |
| Pulse-type runt trigger sensitivities, typical                                                         | 1.0 division from DC to maximum bandwidth                                                                                                                                                                                  |                                                                                                          |                                                      |                                                  |
| Pulse-type trigger<br>width and glitch sensi-<br>tivities, typical                                     | 1.0 division                                                                                                                                                                                                               |                                                                                                          |                                                      |                                                  |
| Logic-type triggering,                                                                                 | For all vertical settings, the minimums are:                                                                                                                                                                               |                                                                                                          |                                                      |                                                  |
| minimum logic or rearm time, typical                                                                   | Trigger type                                                                                                                                                                                                               | Minimum pulse<br>width                                                                                   | Minimum re-arm<br>time                               | Minimum time<br>between<br>channels <sup>1</sup> |
|                                                                                                        | Logic                                                                                                                                                                                                                      | Not applicable                                                                                           | 2 ns                                                 | 1 ns                                             |
|                                                                                                        | Time Quali-<br>fied Logic                                                                                                                                                                                                  | 4 ns                                                                                                     | 2 ns                                                 | 1 ns                                             |
|                                                                                                        | from more than o                                                                                                                                                                                                           | petween channels refers<br>ne channel must exist to<br>ween a main and delaye<br>ed.                     | be recognized. For eve                               | ents, the time is the                            |
| Minimum clock pulse                                                                                    | For all vertical settings, the minimums are:.                                                                                                                                                                              |                                                                                                          |                                                      |                                                  |
| widths for setup/hold<br>time violation trigger,<br>typical                                            | Minimum pulse width, clock active <sup>2</sup>                                                                                                                                                                             |                                                                                                          | Minimum pulse width, clock inactive <sup>2</sup>     |                                                  |
|                                                                                                        | User hold time + 2.5 ns <sup>3</sup> 2 ns                                                                                                                                                                                  |                                                                                                          |                                                      |                                                  |
|                                                                                                        | in the Clock Edge:<br>pulse width is the<br><sup>3</sup> User hold time is                                                                                                                                                 | width is the width of the selection in the Clock So<br>width of the pulse from<br>the number selected by | ource menu) to its inactive its inactive edge to its | ve edge. An inactive active edge.                |
|                                                                                                        | bezel menu.                                                                                                                                                                                                                |                                                                                                          |                                                      |                                                  |

Table 1-3: Trigger specifications (Cont.)

| Characteristic                                                                                                    | Description                                                                                                                                     |                        |                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|
| Setup/hold violation                                                                                              | Feature                                                                                                                                         | Min                    | Max                                                                                     |
| trigger, setup and hold time ranges                                                                               | Setup time                                                                                                                                      | 0 ns                   | 8 s                                                                                     |
| noid time ranges                                                                                                  | Hold time                                                                                                                                       | 4 ns                   | 8 s                                                                                     |
|                                                                                                                   | Setup and hold time                                                                                                                             | 4 ns                   | 16 s                                                                                    |
|                                                                                                                   | Input coupling of                                                                                                                               | on clock and data ch   | annels must be the same.                                                                |
|                                                                                                                   | For Setup Time, positive numbers mean a data transition before the clock.                                                                       |                        |                                                                                         |
|                                                                                                                   | For Hold Time, positive numbers mean a data transition after the clock edge.                                                                    |                        |                                                                                         |
|                                                                                                                   | Setup + Hold Time is the algebraic sum of the Setup Time and the Hold Time programmed by the user.                                              |                        |                                                                                         |
| Pulse type trigger,<br>minimum pulse,<br>rearm time, minimum<br>transition time                                   | Pulse class                                                                                                                                     | Minimum pulse<br>width | Minimum rearm time                                                                      |
|                                                                                                                   | Glitch                                                                                                                                          | 4 ns                   | 2 ns + 5% of glitch width setting                                                       |
|                                                                                                                   | Runt                                                                                                                                            | 4 ns                   | 2 ns                                                                                    |
|                                                                                                                   | Time-qualified runt                                                                                                                             | 4 ns                   | 8.5 ns + 5% of width setting                                                            |
|                                                                                                                   | Width                                                                                                                                           | 4 ns                   | 2 ns + 5% of width upper limit setting                                                  |
|                                                                                                                   | Slew rate                                                                                                                                       | 4 ns                   | 8.5 ns + 5% of delta time setting                                                       |
|                                                                                                                   | For the trigger class width, the pulse width refers to the width of the pulse being measured. The rearm time refers to the time between pulses. |                        |                                                                                         |
|                                                                                                                   | For the trigger class runt, the pulse width refers to the width of the pulse being measured. The rearm time refers to the time between pulses.  |                        |                                                                                         |
|                                                                                                                   | being measured                                                                                                                                  |                        | oulse width refers to the delta time<br>fers to the time it takes the signal to<br>ain. |
| Transition time trig-<br>ger, delta time range                                                                    | 4 ns to 8 s                                                                                                                                     |                        |                                                                                         |
| Time range for glitch,<br>pulse width, timeout,<br>time-qualified runt, or<br>time-qualified window<br>triggering | 4 ns to 8 s                                                                                                                                     |                        |                                                                                         |

**Table 1-3: Trigger specifications (Cont.)** 

| Characteristic                                                                            | Description                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B trigger after events,<br>minimum pulse width<br>and maximum event<br>frequency, typical | 4 ns, 500 MHz                                                                                                                                                                                          |
| B trigger, minimum                                                                        | 4 ns                                                                                                                                                                                                   |
| time between arm<br>and trigger, typical                                                  | For trigger after time, this is the time between the end of the time period and the B trigger event.                                                                                                   |
|                                                                                           | For trigger after events, this is the time between the last A trigger event and the first B trigger event.                                                                                             |
| B trigger after time, time range                                                          | 4 ns to 8 seconds                                                                                                                                                                                      |
| B trigger after events, event range                                                       | 1 to 9,999,999                                                                                                                                                                                         |
| Maximum serial trigger bits                                                               | 128 bits                                                                                                                                                                                               |
| Standard serial                                                                           | I <sup>2</sup> C                                                                                                                                                                                       |
| interface triggering                                                                      | Address Triggering: 7 and 10 bit user specified address, as well as General Call, START byte, HS-mode, EEPROM, and CBUS                                                                                |
|                                                                                           | Data Trigger: 1 to 12 bytes of user specified data                                                                                                                                                     |
|                                                                                           | Trigger On: Start, Repeated Start, Stop, Missing Ack, Data, or Address and Data                                                                                                                        |
|                                                                                           | Maximum Data Rate: 10 Mb/s                                                                                                                                                                             |
|                                                                                           | SPI                                                                                                                                                                                                    |
|                                                                                           | Data Trigger: 1 to 16 bytes of user specified data                                                                                                                                                     |
|                                                                                           | Trigger On: SS Active, MOSI, MISO, or MOSI and MISO                                                                                                                                                    |
|                                                                                           | Maximum Data Rate: 10 Mb/s                                                                                                                                                                             |
|                                                                                           | CAN                                                                                                                                                                                                    |
|                                                                                           | Data Trigger: 1 to 8 bytes of user specified data, including qualifiers of equal to (=), not equal to (<>), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=) |
|                                                                                           | Trigger On: Start of Frame, Type of Frame, Identifier, Data, Identifier and Data, End of Frame, or Missing Ack                                                                                         |
|                                                                                           | Frame Type: Data, Remote, Error, Overload                                                                                                                                                              |
|                                                                                           | Identifier: Standard (11 bit) and Extended (29 bit) identifiers                                                                                                                                        |
|                                                                                           | Maximum Data Rate: 1 Mb/s                                                                                                                                                                              |

Table 1-4: Display specifications

| Characteristic               | Description                                                                                                                                                                         |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display type                 | Display area: 210.4 mm (8.28 inches) (H) x 157.8 mm (6.21 inches) (V), 264 mm (10.4 inches) diagonal, 6-bit RGB full color, XGA (1024 x 768) TFT liquid crystal display (LCD).      |
| Display resolution           | 1000 horizontal by 651 vertical displayed pixels                                                                                                                                    |
| Luminance, typical           | Minimum 240 cd/m <sup>2</sup> , typical 300 cd/m <sup>2</sup>                                                                                                                       |
| Waveform display color scale | The TFT display can support up to 262,144 colors. A subset of these colors are used for the oscilloscope display, all of which are fixed colors and not changeable by the customer. |

Table 1-5: Input/Output port specifications

| Characteristic                                          | Description                                                                                                                 |                                                                       |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Ethernet interface                                      | Standard on all models: 10/100 Mb/s                                                                                         |                                                                       |  |
| USB interface                                           | 1 Device and 3 Host connectors (all                                                                                         | I models)                                                             |  |
| GPIB interface                                          | Available as an optional accessory that connects to USB Device and USB Host port. with the TEK-USB-488 GPIB to USB Adapter. |                                                                       |  |
|                                                         | Control interface is incorporated in t                                                                                      | the instrument user interface.                                        |  |
| Video signal output                                     | A 15 pin, XGA RGB-type connector                                                                                            | A 15 pin, XGA RGB-type connector                                      |  |
| Probe compensator output voltage and frequency, typical | Output voltage: 0 V to 2.5 V $\pm$ 1% behind 1 k $\Omega$ $\pm$ 2% Frequency: 1 kHz $\pm$ 100 ppm                           |                                                                       |  |
|                                                         | LOW TRUE; LOW to HIGH transition indicates that the trigger occurred. The logic levels are:                                 |                                                                       |  |
|                                                         | Characteristic Limits                                                                                                       |                                                                       |  |
|                                                         | Vout (HI) ≥2.5 V open circuit; ≥1.0 V into a 50 Ω load to ground                                                            |                                                                       |  |
| ` '                                                     |                                                                                                                             | ≤0.7 V into a load of ≤4 mA;<br>≤0.25 V into a 50 Ω load to<br>ground |  |

Table 1-6: Power source specifications

| Characteristic   | Description                                                         |
|------------------|---------------------------------------------------------------------|
| Source voltage   | 100 V to 240 V ±10%                                                 |
| Source frequency | (90 V to 264 V) 47 Hz to 66 Hz<br>(100 V to 132 V) 360 Hz to 440 Hz |
| Fuse rating      | T6.3AH, 250 V                                                       |
|                  | The fuse is not customer replaceable                                |

Table 1-7: Data storage specifications

| Characteristic                             | Description                                                                                |             |                      |
|--------------------------------------------|--------------------------------------------------------------------------------------------|-------------|----------------------|
| Nonvolatile memory retention time, typical | No time limit for front-panel settings, saved waveforms, setups, and calibration constants |             |                      |
| Real-time clock                            | A programmable clock providing time in years, months, days, hours, minutes, and seconds    |             |                      |
| Compact Flash card                         | Used to store reference waveforms and front-panel settings                                 |             |                      |
|                                            | Supply<br>Voltage                                                                          | Form factor | Data bits            |
|                                            | Switched<br>3.3 V only                                                                     | Type 1 only | 16 bit data transfer |

**Table 1-8: Environmental specifications** 

| Characteristic   | Description                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature      | Operating: 0 °C to +50 °C (32 °F to 122 °F)                                                                                              |
|                  | Nonoperating: -20 °C to +60 °C (-4 °F to 140 °F)                                                                                         |
| Humidity         | Operating:                                                                                                                               |
|                  | High: 10% to 60% relative humidity, 40 °C to 50 °C (104 °F to 122 °F) Low: 10% to 90% relative humidity, 0 °C to 40 °C (32 °F to 104 °F) |
|                  | Nonoperating:                                                                                                                            |
|                  | High: 5% to 60% relative humidity, 40 °C to 60 °C (104 °F to 140 °F Low: 5% to 90% relative humidity, 0 °C to 40 °C 32 °F to 104 °F)     |
| Pollution Degree | Pollution Degree 2, indoor use only                                                                                                      |

Table 1-8: Environmental specifications (Cont.)

| Characteristic   | Description                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------|
| Altitude         | Operating: 3,000 m (9,843 ft)                                                                         |
|                  | Nonoperating: 12,000 m (39,370 ft)                                                                    |
| Random vibration | Operating: 0.31 g <sub>RMS</sub> from 5 Hz to 500 Hz, 10 minutes on each axis, 3 axes                 |
|                  | Nonoperating: 2.46 $g_{RMS}$ from 5 Hz to 500 Hz, 10 minutes on each axis, 3 axes (30 minutes total). |

**Table 1-9: Mechanical specifications** 

| Characteristic            | Description                                                                                                                                                                                                     |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dimensions                | Nominal, non-rack mount: Height: 229 mm (9.0 in), including feet: 272 mm (10.7 in), including vertical handle and feet                                                                                          |  |
|                           | Width: 439 mm (17.3 in) from handle hub to handle hub                                                                                                                                                           |  |
|                           | Depth:<br>137 mm (5.4 in) from feet to front of knobs<br>145 mm (5.7 in) from feet to front of front cover                                                                                                      |  |
|                           | Nominal, rack mount (5U rack sizes): Height: 218 mm (8.6 in) Width: 488 mm (19.2 in) from outside of handle to outside of handle Depth: 559 mm (22.0 in) from outside of handle to back of slide                |  |
| Weight                    | 5.1 kg (11.3 lbs), stand-alone instrument, without front cover 8.7 kg (19.1 lbs), instrument with rack mount, without front cover 9.5 kg (21.0 lbs), when packaged for domestic shipment and without rack mount |  |
| Clearance<br>Requirements | The clearance requirement for adequate cooling is: 50.8 mm (2 in) on the left side (when looking at the front of the instrument) and on the rear of the unit                                                    |  |

Table 1-10: Safety certification

| Characteristic       | Description                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety certification | Listed UL61010-1: 2004, CAN/CSA-C22.2 No. 61010.1: 2004;<br>Complies with EN61010-1: 2001, Complies with the Low-Voltage<br>Directive 73/23/ECC for Product Safety |

Table 1-11: Electromagnetic compatibility (EMC)

| European Union | EC Council EMC Directive 89/336/EEC, amended by 93/68/EEC;                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------|
|                | Demonstrated using:                                                                                                     |
|                | EN 61326/A2 Electical equipment for measurement, control, and laboratory use. Annex D <sup>1,2</sup>                    |
|                | Emissions<br>EN 61326, Class A                                                                                          |
|                | Immunity IEC 61000-4-2 IEC 61000-4-3 <sup>3</sup> IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 <sup>4</sup> IEC 61000-4-11 |
|                | EN 61000-3-2<br>EN 61000-3-3                                                                                            |
| Australia      | EMC Framework, demostrated per Emission Standard AS/NZS 2064 (Industrial, Scientific, and Medical Equipment).           |

- 1 Emissions that exceed the levels required by this standard may occur when this equipment is connected to a test object.
- <sup>2</sup> Use Low-EMI Shielded cables to maintain compliance.
- The increase in trace noise, while subjected to the test field (3 V/m over the frequency range 80 MHz to 1 GHz with 80% amplitude modulation at 1 kHz), is not to exceed 8 major divisions peak-to-peak. Ambient fields may induce triggering when the trigger threshold is offset less than 4 minor divisions from ground reference.
- The increase in trace noise, while subjected to the injected 3 V test signal, is not to exceed 2 major divisions peak-to-peak. Ambient fields may induce triggering when the trigger threshold is offset less than 1 major division from ground reference.

# **Performance Verification**

### **Performance Verification**

This chapter contains performance verification procedures for the specifications marked with the  $\nu$  symbol. The following equipment, or a suitable equivalent, is required to complete these procedures.

| Description                 | Minimum requirements                       | Examples                                          |  |
|-----------------------------|--------------------------------------------|---------------------------------------------------|--|
| DC voltage source           | 3 mV to 4 V, ±0.1% accuracy                | Fluke 9500                                        |  |
| Leveled sine wave generator | 50 kHz to 1000 MHz, ±4% amplitude accuracy | Oscilloscope Calibrator with a 9510 Output Module |  |
| Time mark generator         | 10 ms period, ±5 ppm accuracy              |                                                   |  |
| One 50 $\Omega$ BNC cable   | Male-to-male connectors                    | Tektronix part number 012-0057-01                 |  |

You may need additional cables and adapters, depending on the actual test equipment you use.

These procedures cover all DPO4000 models. Please disregard checks that do not apply to the specific model you are testing.

Photocopy the test record on the following pages and use it to record the performance test results for your oscilloscope.

**NOTE**. Successful completion of the performance verification procedure does not update the instrument Calibration Due date and time.

The performance verification procedures verify the performance of your instrument, they do not calibrate your instrument. If your instrument fails any of the performance verification tests, you should perform the factory calibration procedures as described in the *DPO4000 Series Service* manual.

### **Test Record**

| Serial<br>number | Procedure performed by | Date |
|------------------|------------------------|------|
|                  |                        |      |

| Test      | Passed | Failed |
|-----------|--------|--------|
| Self Test |        |        |

| Input Impedance                |                |           |             |                 |
|--------------------------------|----------------|-----------|-------------|-----------------|
| Performance checks             | Vertical scale | Low limit | Test result | High limit      |
| All models:                    |                |           |             | •               |
| Channel 1                      | 10 mV/div      | 990 kΩ    |             | 1.01 MΩ         |
| Input Impedance, 1 $M\Omega$   | 100 mV/div     | 990 kΩ    |             | 1.01 MΩ         |
|                                | 1 V/div        | 990 kΩ    |             | 1.01 MΩ         |
| Channel 1<br>Input Impedance,  | 10 mV/div      | 49.5 Ω    |             | 50.5 Ω          |
| 50 Ω                           | 100 mV/div     | 49.5 Ω    |             | 50.5 Ω          |
| Channel 2                      | 10 mV/div      | 990 kΩ    |             | 1.01 MΩ         |
| Input Impedance, $1 M\Omega$   | 100 mV/div     | 990 kΩ    |             | 1.01 MΩ         |
|                                | 1 V/div        | 990 kΩ    |             | 1.01 MΩ         |
| Channel 2                      | 10 mV/div      | 49.5 Ω    |             | 50.5 Ω          |
| Input Impedance, 50 $\Omega$   | 100 mV/div     | 49.5 Ω    |             | 50.5 Ω          |
| DPO4104, DPO40                 | )54, DPO4034:  | L         | I           |                 |
| Channel 3                      | 10 mV/div      | 990 kΩ    |             | 1.01 M $\Omega$ |
| Input Impedance, 1 M $\Omega$  | 100 mV/div     | 990 kΩ    |             | 1.01 M Ω        |
|                                | 1 V/div        | 990 kΩ    |             | 1.01 M Ω        |
| Channel 3                      | 10 mV/div      | 49.5 Ω    |             | 50.5 Ω          |
| Input Impedance, $50~\Omega$   | 100 mV/div     | 49.5 Ω    |             | 50.5 Ω          |
| Channel 4                      | 10 mV/div      | 990 kΩ    |             | 1.01 M Ω        |
| Input Impedance, 1 M $\Omega$  | 100 mV/div     | 990 kΩ    |             | 1.01 M Ω        |
|                                | 1 V/div        | 990 kΩ    |             | 1.01 M Ω        |
| Channel 4,<br>Input Impedance, | 10 mV/div      | 49.5 Ω    |             | 50.5 Ω          |
| input impedance, $50~\Omega$   | 100 mV/div     | 49.5 Ω    |             | 50.5 Ω          |

| DC Balance                   |                       |           |             |            |
|------------------------------|-----------------------|-----------|-------------|------------|
| Performance checks           | Vertical scale        | Low limit | Test result | High limit |
| All models:                  |                       |           |             |            |
| Channel 1                    | 1 mV/div              | -0.5 mv   |             | 0.5 mV     |
| DC Balance,<br>50 Ω,         | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 20 MHz BW                    | 100 mV/div            | -20 mV    |             | 20 mV      |
|                              | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 1                    | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>1 M $\Omega$ , | 100 mV/div            | -20 mV    |             | 20 mV      |
| 20 MHz BW                    | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 1                    | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| DC Balance,<br>50 Ω,         | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 250 MHz BW                   | 100 mV/div            | -20 mV    |             | 20 mV      |
|                              | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 1                    | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>I MΩ,          | 100 mV/div            | -20 mV    |             | 20 mV      |
| 250 MHz BW                   | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 1                    | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| OC Balance, $\Omega$         | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| ull BW                       | 100 mV/div            | -20 mV    |             | 20 mV      |
|                              | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 1                    | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| OC Balance<br>MΩ,            | 100 mV/div            | -20 mV    |             | 20 mV      |
| ull BW                       | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 2                    | 1 mV/div              | -0.5 mv   |             | 0.5 mV     |
| OC Balance,<br>i0 Ω,         | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 0 MHz BW                     | 100 mV/div            | -20 mV    |             | 20 mV      |
|                              | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 2                    | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>I MΩ,          | 100 mV/div            | -20 mV    |             | 20 mV      |
| 20 MHz BW                    | 1 V/div               | -200 mV   |             | 200 mV     |

| Performance<br>checks  | Vertical scale        | Low limit | Test result | High limit |
|------------------------|-----------------------|-----------|-------------|------------|
| Channel 2              | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| DC Balance, $\Omega$   | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 250 MHz BW             | 100 mV/div            | -20 mV    |             | 20 mV      |
|                        | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 2              | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| OC Balance $M\Omega$ , | 100 mV/div            | -20 mV    |             | 20 mV      |
| 250 MHz BW             | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 2              | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| OC Balance, $\Omega$   | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| Full BW                | 100 mV/div            | -20 mV    |             | 20 mV      |
|                        | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 2              | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| OC Balance<br>MΩ,      | 100 mV/div            | -20 mV    |             | 20 mV      |
| Full BW                | 1 V/div               | -200 mV   |             | 200 mV     |
| PO4104, DPO4           | 1054, DPO4034:        |           | 1           | <b>,</b>   |
| Channel 3              | 1 mV/div              | -0.5 mv   |             | 0.5 mV     |
| OC Balance,<br>0 Ω,    | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 0 MHz BW               | 100 mV/div            | -20 mV    |             | 20 mV      |
|                        | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 3              | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| OC Balance $M\Omega$ . | 100 mV/div            | -20 mV    |             | 20 mV      |
| 0 MHz BW               | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 3              | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| OC Balance, $\Omega$   | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 50 MHz BW              | 100 mV/div            | -20 mV    |             | 20 mV      |
|                        | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 3              | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>I MΩ,    | 100 mV/div            | -20 mV    |             | 20 mV      |
| 50 MHz BW              | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 3              | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| OC Balance, $\Omega$   | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| Full BW                | 100 mV/div            | -20 mV    |             | 20 mV      |
|                        | 1 V/div               | -200 mV   |             | 200 mV     |

| Performance checks        | Vertical scale        | Low limit | Test result | High limit |
|---------------------------|-----------------------|-----------|-------------|------------|
| Channel 3                 | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance 1 M $\Omega$ , | 100 mV/div            | -20 mV    |             | 20 mV      |
| Full BW                   | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div              | -0.5 mv   |             | 0.5 mV     |
| DC Balance, $\Omega$      | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 20 MHz BW                 | 100 mV/div            | -20 mV    |             | 20 mV      |
|                           | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>1 MΩ,       | 100 mV/div            | -20 mV    |             | 20 mV      |
| 20 MHz BW                 | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| DC Balance, 50 $\Omega$ , | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| 250 MHz BW                | 100 mV/div            | -20 mV    |             | 20 mV      |
|                           | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance<br>1 MΩ,       | 100 mV/div            | -20 mV    |             | 20 mV      |
| 250 MHz BW                | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div              | -0.5 mV   |             | 0.5 mV     |
| DC Balance, 50 $\Omega$ . | 2 mV/div              | -0.5 mV   |             | 0.5 mV     |
| Full BW                   | 100 mV/div            | -20 mV    |             | 20 mV      |
|                           | 1 V/div               | -200 mV   |             | 200 mV     |
| Channel 4                 | 1 mV/div <sup>1</sup> | -0.3 mV   |             | 0.3 mV     |
| DC Balance 1 $M\Omega$ ,  | 100 mV/div            | -20 mV    |             | 20 mV      |
| Full BW                   | 1 V/div               | -200 mV   |             | 200 mV     |

<sup>&</sup>lt;sup>1</sup> Immediately after calibration, the specification is -0.2 div to 0.20 div. For performance verification testing, the specification is -0.3 to 0.3 div.

| Performan                    | ce checks:     | Bandwidth      |                    |                    |         |                                          |
|------------------------------|----------------|----------------|--------------------|--------------------|---------|------------------------------------------|
| Band-<br>width at<br>Channel | Imped-<br>ance | Vertical scale | V <sub>in-pp</sub> | V <sub>bw-pp</sub> | Limit   | Test result $Gain = V_{bw-pp}/V_{in-pp}$ |
| All models                   | s:             |                |                    |                    | •       |                                          |
| 1                            | 50 Ω           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 1                            | 50 Ω           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 1                            | 50 Ω           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 1                            | 1 ΜΩ           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 1                            | 1 ΜΩ           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 1                            | 1 ΜΩ           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 50 Ω           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 50 Ω           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 50 Ω           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 1 ΜΩ           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 1 ΜΩ           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 2                            | 1 ΜΩ           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| DPO4104,                     | DPO4054, [     | DPO4034:       |                    | <u> </u>           |         | •                                        |
| 3                            | 50 Ω           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 3                            | 50 Ω           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 3                            | 50 Ω           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 3                            | 1 ΜΩ           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 3                            | 1 ΜΩ           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 3                            | 1 ΜΩ           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 50 Ω           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 50 Ω           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 50 Ω           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 1 MΩ           | 5 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 1 ΜΩ           | 2 mV/div       |                    |                    | ≥ 0.707 |                                          |
| 4                            | 1 ΜΩ           | 1 mV/div       |                    |                    | ≥ 0.707 |                                          |

| Performance checks          | Vertical scale | Low limit | Test result | High limit |
|-----------------------------|----------------|-----------|-------------|------------|
| All models:                 |                | •         | •           | •          |
| Channel 1                   | 1 mV/div       | -1.5%     |             | 1.5%       |
| DC Gain<br>Accuracy,        | 2 mV/div       | -1.5%     |             | 1.5%       |
| OV offset,<br>OV vertical   | 4.98 mV        | -3.0%     |             | 3.0%       |
| oosition,                   | 5 mV/div       | -1.5%     |             | 1.5%       |
| 20 MHz BW, 50 Ω             | 10 mV/div      | -1.5%     |             | 1.5%       |
|                             | 20 mV/div      | -1.5%     |             | 1.5%       |
|                             | 49.8 mV        | -3.0%     |             | 3.0%       |
|                             | 50 mV/div      | -1.5%     |             | 1.5%       |
|                             | 100 mV/div     | -1.5%     |             | 1.5%       |
|                             | 200 mV/div     | -1.5%     |             | 1.5%       |
|                             | 500 mV/div     | -1.5%     |             | 1.5%       |
|                             | 1.0 V/div      | -1.5%     |             | 1.5%       |
| Channel 1                   | 1 mV/div       | -1.5%     |             | 1.5%       |
| DC Gain<br>Accuracy,        | 2 mV/div       | -1.5%     |             | 1.5%       |
| ) V offset,<br>) V vertical | 4.98 mV/div    | -3.0%     |             | 3.0%       |
| position,                   | 5 mV/div       | -1.5%     |             | 1.5%       |
| 20 MHz BW,<br>1 MΩ          | 10 mV/div      | -1.5%     |             | 1.5%       |
|                             | 20 mV/div      | -1.5%     |             | 1.5%       |
|                             | 49.8 mV        | -3.0%     |             | 3.0%       |
|                             | 50 mV/div      | -1.5%     |             | 1.5%       |
|                             | 100 mV/div     | -1.5%     |             | 1.5%       |
|                             | 200 mV/div     | -1.5%     |             | 1.5%       |
|                             | 500 mV/div     | -1.5%     |             | 1.5%       |
|                             | 1 V/div        | -1.5%     |             | 1.5%       |

| Performance                 |                |           |             |            |
|-----------------------------|----------------|-----------|-------------|------------|
| checks                      | Vertical scale | Low limit | Test result | High limit |
| Channel 2                   | 1 mV/div       | -1.5%     |             | 1.5%       |
| DC Gain<br>Accuracy,        | 2 mV/div       | -1.5%     |             | 1.5%       |
| 0 V offset,<br>0 V vertical | 4.98 mV        | -3.0%     |             | 3.0%       |
| position,                   | 5 mV/div       | -1.5%     |             | 1.5%       |
| 20 MHz BW, 50 Ω             | 10 mV/div      | -1.5%     |             | 1.5%       |
|                             | 20 mV/div      | -1.5%     |             | 1.5%       |
|                             | 49.8 mV        | -3.0%     |             | 3.0%       |
|                             | 50 mV/div      | -1.5%     |             | 1.5%       |
|                             | 100 mV/div     | -1.5%     |             | 1.5%       |
|                             | 200 mV/div     | -1.5%     |             | 1.5%       |
|                             | 500 mV/div     | -1.5%     |             | 1.5%       |
|                             | 1.0 V/div      | -1.5%     |             | 1.5%       |
| Channel 2                   | 1 mV/div       | -1.5%     |             | 1.5%       |
| DC Gain<br>Accuracy,        | 2 mV/div       | -1.5%     |             | 1.5%       |
| 0 V offset,<br>0 V vertical | 4.98 mV/div    | -3.0%     |             | 3.0%       |
| position,                   | 5 mV/div       | -1.5%     |             | 1.5%       |
| 20 MHz BW,<br>1 MΩ          | 10 mV/div      | -1.5%     |             | 1.5%       |
|                             | 20 mV/div      | -1.5%     |             | 1.5%       |
|                             | 49.8 mV        | -3.0%     |             | 3.0%       |
|                             | 50 mV/div      | -1.5%     |             | 1.5%       |
|                             | 100 mV/div     | -1.5%     |             | 1.5%       |
|                             | 200 mV/div     | -1.5%     |             | 1.5%       |
|                             | 500 mV/div     | -1.5%     |             | 1.5%       |
|                             | 1 V/div        | -1.5%     |             | 1.5%       |

| Performance checks               | Vertical scale | Low limit  | Test result | High limit    |
|----------------------------------|----------------|------------|-------------|---------------|
| DPO4104, DPO40                   |                | LOW IIIIII | rest result | Tilgii iiiiit |
| Channel 3                        | 1 mV/div       | -1.5%      |             | 1.5%          |
| DC Gain                          | 2 mV/div       | -1.5%      |             | 1.5%          |
| Accuracy,<br>0 V offset,         | 4.98 mV        | -3.0%      |             | 3.0%          |
| 0 V vertical                     | 5 mV/div       | -1.5%      |             | 1.5%          |
| position, 20 MHz BW, 50 $\Omega$ | 10 mV/div      | -1.5%      |             | 1.5%          |
|                                  | 20 mV/div      | -1.5%      |             | 1.5%          |
|                                  | 49.8 mV        | -3.0%      |             | 3.0%          |
|                                  | 50 mV/div      |            |             | 1.5%          |
|                                  | -              | -1.5%      |             |               |
|                                  | 100 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 200 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 500 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 1.0 V/div      | -1.5%      |             | 1.5%          |
| Channel 3<br>DC Gain             | 1 mV/div       | -1.5%      |             | 1.5%          |
| Accuracy,                        | 2 mV/div       | -1.5%      |             | 1.5%          |
| 0 V offset,<br>0 V vertical      | 4.98 mV/div    | -3.0%      |             | 3.0%          |
| position,                        | 5 mV/div       | -1.5%      |             | 1.5%          |
| 20 MHz BW,<br>1 MΩ               | 10 mV/div      | -1.5%      |             | 1.5%          |
|                                  | 20 mV/div      | -1.5%      |             | 1.5%          |
|                                  | 49.8 mV        | -3.0%      |             | 3.0%          |
|                                  | 50 mV/div      | -1.5%      |             | 1.5%          |
|                                  | 100 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 200 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 500 mV/div     | -1.5%      |             | 1.5%          |
|                                  | 1 V/div        | -1.5%      |             | 1.5%          |

| Performance                                                                    |                |           |             |            |
|--------------------------------------------------------------------------------|----------------|-----------|-------------|------------|
| checks                                                                         | Vertical scale | Low limit | Test result | High limit |
| Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 20 MHz BW, 50 Ω | 1 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 2 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 4.98 mV        | -3.0%     |             | 3.0%       |
|                                                                                | 5 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 10 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 20 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 49.8 mV        | -3.0%     |             | 3.0%       |
|                                                                                | 50 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 100 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 200 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 500 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 1.0 V/div      | -1.5%     |             | 1.5%       |
| Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 20 MHz BW, 1 MΩ | 1 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 2 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 4.98 mV/div    | -3.0%     |             | 3.0%       |
|                                                                                | 5 mV/div       | -1.5%     |             | 1.5%       |
|                                                                                | 10 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 20 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 49.8 mV        | -3.0%     |             | 3.0%       |
|                                                                                | 50 mV/div      | -1.5%     |             | 1.5%       |
|                                                                                | 100 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 200 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 500 mV/div     | -1.5%     |             | 1.5%       |
|                                                                                | 1 V/div        | -1.5%     |             | 1.5%       |

| Performance checks              | Vertical scale              | Low limit | Test result | High limit |
|---------------------------------|-----------------------------|-----------|-------------|------------|
| All models:                     |                             |           | •           | •          |
| Channel 1<br>DC Offset          | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW, 50 Ω    | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
| Channel 1<br>DC Offset          | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW,<br>1 MΩ | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
|                                 | 1 V/div<br>99.5 V offset    | -598.5 mV |             | 598.5 mV   |
|                                 | 1 V/div<br>-99.5 V offset   | -598.5 mV |             | 598.5 mV   |

| Performance checks              | Vertical scale              | Low limit | Test result | High limit |
|---------------------------------|-----------------------------|-----------|-------------|------------|
| Channel 2<br>DC Offset          | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW, 50 Ω    | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
| Channel 2<br>DC Offset          | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW,<br>1 MΩ | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
|                                 | 1 V/div<br>99.5 V offset    | -598.5 mV |             | 598.5 mV   |
|                                 | 1 V/div<br>-99.5 V offset   | -598.5 mV |             | 598.5 mV   |

| Performance                     |                             |           |             |            |
|---------------------------------|-----------------------------|-----------|-------------|------------|
| DPO4104, DPO405                 | Vertical scale              | Low limit | Test result | High limit |
| Channel 3                       | 1 mV/div                    | -5.1 mV   |             | 5.1 mV     |
| DC Offset                       | 1.0 V offset                | -5.1 1114 |             | 0.1111     |
| Accuracy,<br>20 MHz BW, 50 Ω    | -1 mV/div<br>1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
| Channel 3<br>DC Offset          | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW,<br>1 MΩ | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                 | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                 | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                 | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                 | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                 | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                 | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
|                                 | 1 V/div<br>99.5 V offset    | -598.5 mV |             | 598.5 mV   |
|                                 | 1 V/div<br>-99.5 V offset   | -598.5 mV |             | 598.5 mV   |

| Performance checks               | Vertical scale              | Low limit | Test result | High limit |
|----------------------------------|-----------------------------|-----------|-------------|------------|
| Channel 4<br>DC Offset           | 1 mV/div<br>1.0 V offset    | -5.1 mV   | rest resuit | 5.1 mV     |
| Accuracy, 20 MHz BW, 50 $\Omega$ | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                  | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                  | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                  | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                  | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                  | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                  | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
| Channel 4<br>DC Offset           | 1 mV/div<br>1.0 V offset    | -5.1 mV   |             | 5.1 mV     |
| Accuracy,<br>20 MHz BW,<br>1 MΩ  | 1 mV/div<br>-1.0 V offset   | -5.1 mV   |             | 5.1 mV     |
|                                  | 2 mV/div<br>500 mV offset   | -3 mV     |             | 3 mV       |
|                                  | 2 mV/div<br>-500 mV offset  | -3 mV     |             | 3 mV       |
|                                  | 10 mV/div<br>500 mV offset  | -3.5 mV   |             | 3.5 mV     |
|                                  | 10 mV/div<br>-500 mV offset | -3.5 mV   |             | 3.5 mV     |
|                                  | 100 mV/div<br>5.0 V offset  | -35 mV    |             | 35 mV      |
|                                  | 100 mV/div<br>-5.0 V offset | -35 mV    |             | 35 mV      |
|                                  | 1 V/div<br>99.5 V offset    | -598.5 mV |             | 598.5 mV   |
|                                  | 1 V/div<br>-99.5 V offset   | -598.5 mV |             | 598.5 mV   |

| Performance checks Sample Rate and Delay Time Accuracy |            | Low limit    | Test result | +1 divisions |  |
|--------------------------------------------------------|------------|--------------|-------------|--------------|--|
|                                                        |            | -1 divisions |             |              |  |
| Auxiliary (Trigg                                       | er) Output |              |             |              |  |
| Trigger Output                                         | High 1 MΩ  | ≥2.5 V       |             | _            |  |
|                                                        | Low 1 MΩ   | _            |             | < 0.7 V      |  |
| Trigger Output                                         | High 50 Ω  | ≥1.0 V       |             | _            |  |
|                                                        | Low 50 Ω   | _            |             | < 0.25 V     |  |

# **Performance Verification Procedures**

The following three conditions must be met prior to performing these procedures:

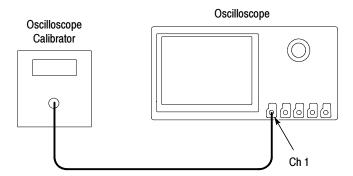
- 1. The oscilloscope must have been operating continuously for twenty (20) minutes in an environment that meets the operating range specifications for temperature and humidity.
- 2. You must perform a signal path compensation (SPC). See Signal Path Compensation in the DPO4000 Series Digital Phosphor Oscilloscopes User Manual. If the operating temperature changes by more than 10 °C (18 °F), you must perform the signal path compensation again.
- 3. You must connect the oscilloscope and the test equipment to the same AC power circuit. Connect the oscilloscope and test instruments into a common power strip if you are unsure of the AC power circuit distribution. Connecting the oscilloscope and test instruments into separate AC power circuits can result in offset voltages between the equipment, which can invalidate the performance verification procedure.

The time required to complete the entire procedure is approximately one hour.



**WARNING.** Some procedures use hazardous voltages. To prevent electrical shock, always set voltage source outputs to 0 V before making or changing any interconnections.

#### **Self Test**

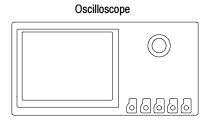

This procedure uses internal routines to verify that the oscilloscope functions and passes its internal self tests. No test equipment or hookups are required. Start the self test with these steps:

- 1. Disconnect all probes and cables from the oscilloscope inputs.
- 2. Push the **Utility** menu button.
- **3.** Push the **System** lower-bezel button to select Self Test.
- **4.** Push the **Self Test** lower-bezel button.
- **5.** Push the **Loop X Times** side-bezel button, and use the **Multipurpose a** knob to select 1.
- **6.** Push the **OK Run Self Test** side-bezel button.
- 7. Wait while the self test runs. When the self test completes, a dialog box displays the results of the self test.
- **8.** Push the **Menu Off** button to clear the dialog box and Self Test menu.

# Check Input Impedance (Resistance)

This test checks the Input Impedance.

1. Connect the output of the oscilloscope calibrator (e.g. Fluke 9500) to the oscilloscope channel 1 input, as shown below.



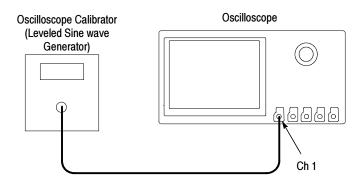

- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings; push the **Menu Off** button.
- 3. Confirm that the oscilloscope and calibrator impedances are both set to  $1 \text{ M}\Omega$ . On some oscilloscope models, push the relevant channel button (e.g. 1) and then push the **Coupling** lower-bezel button. Push the **1M**  $\Omega$  side-bezel button. On other models, push the lower-bezel **Impedance** button, if needed, to select **50**  $\Omega$ . Push the **Menu Off** button.
- **4.** Push the channel button for the oscilloscope channel that you are testing, as shown in the test record (e.g. 1, 2, 3, or 4).
- **5.** Turn **Vertical Scale** knob to set the vertical scale, as shown in the test record (e.g. 10 mV/div, 100 mV/div, 1 V/div).
- **6.** Measure the input resistance of the oscilloscope with the calibrator. Record this value in the test record.
- 7. Repeat steps 5 and 6 for each volt/div setting in the test record.
- **8.** Change the oscilloscope and calibrator impedance to 50  $\Omega$  and repeat steps 5 through 7.
- **9.** Repeat steps 3 through 8 for each channel listed in the test record and relevant to the model of oscilloscope that you are testing.

#### **Check DC Balance**

This test checks the DC balance.

You do not need to connect the oscilloscope to any other equipment to run this test.




- 1. Attach a 50  $\Omega$  terminator to the channel input of the oscilloscope being tested.
- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the front-panel channel button for the oscilloscope channel that you are testing, as shown in the test record (e.g. 1, 2, 3, or 4).
- 4. Set the oscilloscope impedance to 50  $\Omega$ . On some models (if needed), push the **Coupling** lower-bezel button, and push the **50**  $\Omega$  side-bezel button. On other models (if needed), push the lower-bezel **Impedance** button to select **50**  $\Omega$ . Push the **Menu Off** button.
- **5.** Enter the lower-bezel **Bandwidth** button and the side-bezel bandwidth selection (e.g. **20MHz**, **250MHz**, or **Full**), as given in the test record.
- **6.** Turn the Horizontal **Scale** knob to 1 ms/division.
- 7. Turn the Vertical **Scale** knob to set the vertical scale, as shown in the test record (e.g. 1 mV/div, 2 mV/div, 100 mV/div, 1 V/div).
- **8.** Push the front-panel **Acquire** button.
- **9.** Push the **Mode** lower bezel button, and then, if needed, push the **Average** side bezel button.
- **10.** If needed, adjust the number of averages to **16** with the **Multipurpose a** knob.
- 11. Press the Trigger Menu front-panel button.
- **12.** Press the **Source** lower-bezel button.
- 13. Select the AC Line trigger source on the side menu. Notice that you do not need to hook up any external signal to the oscilloscope for this DC Balance test.

- **14.** Push the Wave Inspector **Measure** button.
- **15.** Push the **Select Measurement** lower bezel button.
- **16.** Push the  **more -** side bezel button as many times as needed to display the **Mean** measurement (e.g. menu 6 of 7).
- 17. Push the Mean side-bezel button.
- **18.** View the mean measurement value in the display and enter that mean value as the test result in the test record.
- **19.** Repeat steps 7 through 18 for each volts/division value listed in the results table.
- **20.** Change the oscilloscope bandwidth (e.g. 20 MHz, 250 MHz, and full) and repeat steps 5 through 19.
- **21.** Change the oscilloscope impedance to 1 M $\Omega$  and repeat steps 5 through 20.
- 22. Repeat steps 3 through 20 for each channel combination listed in the test record and relevant to your model of oscilloscope (e.g. 1, 2, 3, or 4).

#### **Check Bandwidth**

This test checks the bandwidth at 50  $\Omega$  and 1 M $\Omega$  for each channel.

1. Connect the output of the leveled sine wave generator (e.g. Wavetek 9500) to the oscilloscope channel 1 input as shown below.



- 2. Push the front-panel **Default Setup** button to set the instrument to the factory default settings; push the **Menu Off** button.
- 3. Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- **4.** Set the calibrator to  $50 \Omega$  output impedance ( $50 \Omega$  source impedance) and to generate a sine wave.
- 5. Set the oscilloscope impedance to 50  $\Omega$ . On some models (if needed), push the **Coupling** lower-bezel button, and push the **50**  $\Omega$  side-bezel button. On other models (if needed), push the lower-bezel **Impedance** button to select **50**  $\Omega$ . Push the **Menu Off** button.
- **6.** Turn the Vertical **Scale** knob to set the vertical scale, as shown in the test record (e.g. 1 mV/div, 2 mV/div, 5 mV/div).
- 7. Push the front-panel **Acquire** button.
- **8.** Confirm that the mode is set to **Sample**. If not push the **Mode** lower-bezel button, and then push the **Sample** side bezel button.
- 9. Adjust the signal source to 8 vertical divisions at the selected vertical scale with a set frequency of 50 KHz (e.g. at 5 mV/div., use  $a \ge 40$  mV<sub>p-p</sub> signal, at 2 mV/div., use  $a \ge 16$  mV<sub>p-p</sub> signal, at 1 mV/div., use  $a \ge 8$  mV<sub>p-p</sub> signal). Use a sine wave for the signal source.
- **10.** Turn the Horizontal **Scale** knob to 10 μs/division.
- 11. Push the front-panel **Measure** button, the lower-bezel **Select Measurement** item, and the side-menu **Pk-Pk** measurement. This will provide you with a mean  $V_{p-p}$  of the signal. Call this reading  $V_{in-pp}$ .

Record the value of  $V_{in-pp}$  (e.g. 816 mV) in the test record.

- 12. Turn the Horizontal Scale knob to 1 ns/division.
- 13. Adjust the signal source to the maximum bandwidth frequency for the bandwidth and model desired, as shown in worksheet below. Measure  $V_{p-p}$  of the signal on the oscilloscope using statistics, as in the previous step, to get the mean  $V_{p-p}$ . Call this reading  $V_{bw-pp}$ .

Record the value of  $V_{bw-pp}$  in the test record.

**NOTE**. For more information on the contents of this worksheet, refer to the bandwidth specifications in Table 1-1 on page 1-3 and 1-4.

Table 2-1: Maximum Bandwidth Frequency Worksheet

| Model: DPO4104 |                |                             |  |  |
|----------------|----------------|-----------------------------|--|--|
| Impedance      | Vertical Scale | Maximum bandwidth frequency |  |  |
| 50 Ω           | 5 mV/div       | 1 GHz                       |  |  |
| 50 Ω           | 2 mV/div       | 350 MHz                     |  |  |
| 50 Ω           | 1 mV/div       | 200 MHz                     |  |  |
| 1 ΜΩ           | 5 mV/div       | 380 MHz                     |  |  |
| 1 ΜΩ           | 2 mV/div       | 300 MHz                     |  |  |
| 1 ΜΩ           | 1 mV/div       | 175 MHz                     |  |  |

| Model: DPO4054 |                |                             |  |
|----------------|----------------|-----------------------------|--|
| Impedance      | Vertical Scale | Maximum bandwidth frequency |  |
| 50 Ω           | 5 mV/div       | 500 MHz                     |  |
| 50 Ω           | 2 mV/div       | 350 MHz                     |  |
| 50 Ω           | 1 mV/div       | 200 MHz                     |  |
| 1 ΜΩ           | 5 mV/div       | 380 MHz                     |  |
| 1 ΜΩ           | 2 mV/div       | 300 MHz                     |  |
| 1 ΜΩ           | 1 mV/div       | 175 MHz                     |  |

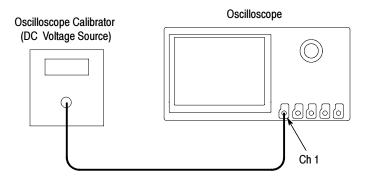
| Model: DPO4034 and DPO4032 |                |                             |  |  |
|----------------------------|----------------|-----------------------------|--|--|
| Impedance                  | Vertical Scale | Maximum bandwidth frequency |  |  |
| 50 Ω                       | 5 mV/div       | 350 MHz                     |  |  |

Table 2-1: (Cont.)Maximum Bandwidth Frequency Worksheet

| Impedance | Vertical Scale | Maximum bandwidth frequency |
|-----------|----------------|-----------------------------|
| 50 Ω      | 2 mV/div       | 350 MHz                     |
| 50 Ω      | 1 mV/div       | 200 MHz                     |
| 1 ΜΩ      | 5 mV/div       | 350 MHz                     |
| 1 ΜΩ      | 2 mV/div       | 300 MHz                     |
| 1 ΜΩ      | 1 mV/div       | 175 MHz                     |

**14.** Use the values of  $V_{bw-pp}$  and  $V_{in-pp}$  obtained above and stored in the test record to calculate the *Gain* at bandwidth with the following equation:

$$Gain = V_{bw-pp}/V_{in-pp}$$
.


To pass the performance measurement test, Gain should be  $\geq 0.707$ .

Enter Gain in the test record.

- **15.** Repeat steps 10 through 14 above for the other oscilloscope volts/div listed in the test record.
- **16.** Change the oscilloscope impedance to 1 M $\Omega$ , set the calibrator to 1 M $\Omega$  impedance (25  $\Omega$  source impedance), and repeat steps 10 through 15.
- 17. Repeat steps 3 through 16 for each channel combination listed in the test record and relevant to your model of oscilloscope (e.g. 1, 2, 3, or 4).

### **Check DC Gain Accuracy**

This test checks the DC gain accuracy.



- 1. Connect the oscilloscope to a DC voltage source. If using the Wavetek 9500 calibrator, connect the calibrator head to the oscilloscope channel to test.
- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- 4. Confirm that the oscilloscope and calibrator impedances are both set to 50 Ω. On some oscilloscope models, push the relevant channel button (e.g. 1) and then push the Coupling lower-bezel button. Push the 50 Ω side-bezel button. On other models, push the lower-bezel Impedance button, if needed, to select 50 Ω. Push the Menu Off button.
- 5. Push the lower-bezel **Bandwidth** button.
- **6.** Push the side-bezel button to select the bandwidth to **20 MHz**.
- 7. Push the front-panel **Acquire** button.
- **8.** Check that the **Mode** lower-bezel button is selected. If not, push it to select it, and then, if needed, push the **Average** side bezel button.
- **9.** Check that the menu item next to the **Average** mode side-bezel button mode shows **16**. If not, push the **Average** side-bezel button and adjust the number of averages to **16** by turning the **Multipurpose a** knob.
- **10.** Push the front-panel **Measure** button, the lower-bezel **Select Measurement** button, and the side-bezel **Mean** selection.
- 11. Push the Trigger Menu front-panel button.
- 12. Push the Source lower-bezel button.
- **13.** Select the **AC** Line trigger source on the side menu.

- **14.** Turn the vertical **Scale** knob to the next setting to measure, as shown on the table below.
- 15. Set the DC Voltage Source to  $V_{negative}$  (see table below). Push **Statistics** in the lower-bezel menu and **Reset Statistics** in the side-bezel menu. Enter the mean reading into the table below as  $V_{negative-measured}$ .
- 16. Set the DC Voltage Source to  $V_{positive}$  (see table below). Push Statistics in the lower-bezel menu and Reset Statistics in the side-bezel menu. Enter the mean reading into the table below as  $V_{positive-measured}$ .

**Table 2-2: Gain Expected Worksheet** 

| Oscilloscope<br>Vertical<br>Scale Setting | V <sub>diffExpected</sub> | V <sub>negative</sub> | V <sub>positive</sub> | V <sub>negative</sub> - | V <sub>positive</sub> - | V <sub>diff</sub> | Test Result<br>(Gain<br>Accuracy) |
|-------------------------------------------|---------------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------|-----------------------------------|
| 1 mV/div                                  | 9 mV                      | -4.5 mV               | +4.5 mV               |                         |                         |                   |                                   |
| 2 mV/div                                  | 18 mV                     | -9 mV                 | +9 mV                 |                         |                         |                   |                                   |
| 4.98 mV                                   | 44.82 mV                  | -22.41 mV             | +22.41 mV             |                         |                         |                   |                                   |
| 5 mV                                      | 45 mV                     | -22.5 mV              | +22.5 mV              |                         |                         |                   |                                   |
| 10 mV                                     | 90 mV                     | -45 mV                | +45 mV                |                         |                         |                   |                                   |
| 20 mV                                     | 180 mV                    | -90 mV                | +90 mV                |                         |                         |                   |                                   |
| 49.8 mV                                   | 448.2 mV                  | -224.1 mV             | +224.1 mV             |                         |                         |                   |                                   |
| 50 mV                                     | 450 mV                    | -225 mV               | +225 mV               |                         |                         |                   |                                   |
| 100 mV                                    | 900 mV                    | -450 mV               | +450 mV               |                         |                         |                   |                                   |
| 200 mV                                    | 1800 mV                   | -900 mV               | +900 mV               |                         |                         |                   |                                   |
| 500 mV                                    | 4900 mV                   | -2450 mV              | +2450 mV              |                         |                         |                   |                                   |
| 1.0 V                                     | 9000 mV                   | -4500 mV              | +4500 mV              |                         |                         |                   |                                   |

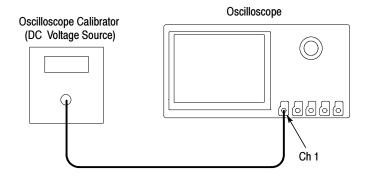
17. Calculate  $V_{diff}$  as follows:

$$V_{diff} = |V_{negative-measured} - V_{positive-measured}|$$

Enter  $V_{diff}$  in the table above.

**18.** Calculate *GainAccuracy* as follows:

$$GainAccuracy = ((V_{diff} - V_{diffExpected})/V_{diffExpected}) \times 100\%$$


Write down *GainAccuracy* in the table above and in the test record.

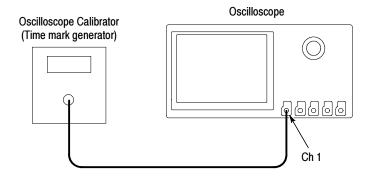
- 19. Repeat steps 14 through 18 for each volts/division value in the test record.
- **20.** Change the oscilloscope impedance to 1 M $\Omega$ , and repeat steps 14 through 19.

**21.** Repeat steps 3 through 20 for each channel of the oscilloscope that you want to check.

## **Check Offset Accuracy**

This test checks the offset accuracy.




- 1. Connect the oscilloscope to a DC voltage source to run this test. If using the Wavetek calibrator as the DC voltage source, connect the calibrator head to the oscilloscope channel to test.
- **2.** Push the Save/Recall **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- 4. Confirm that the oscilloscope and calibrator impedances are both set to 50 Ω. On some oscilloscope models, push the relevant channel button (e.g. 1) and then push the Coupling lower-bezel button. Push the 50 Ω side-bezel button. On other models, push the lower-bezel Impedance button, if needed, to select 50 Ω. Push the Menu Off button.
- 5. Set the calibrator to the vertical offset value shown in the test record (e.g. 1.0 V for a 1 mV/div setting). Set the calibrator to the same impedance as you set for the oscilloscope.
- **6.** Set the oscilloscope to the vertical offset value shown in the test record (e.g. 1.0 V for a 1 mV/div setting).
- 7. Turn the vertical **Scale** to match the value in the test record (e.g. 1 mV/division).
- **8.** Turn the Horizontal **Scale** knob to 1 ms/div.
- **9.** Push the lower-bezel **Bandwidth** button.
- 10. Push the side-bezel button to select the bandwidth to 20 MHz.

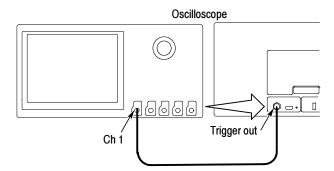
- 11. Check that the vertical position is set to 0 divs. If not, turn the Vertical **Position** knob to set the position to 0 or press the appropriate **Set to 0 divs** button.
- **12.** Push the front-panel **Acquire** button.
- **13.** If **Mode** is not selected on the lower-bezel menu, push the **Mode** lower-bezel button, and then, if **Average** is not selected on the side-menu, push the **Average** side bezel button.
- **14.** If the number of averages is not already set to **16**, set it to **16** with the **Multipurpose a** knob.
- **15.** Press the Trigger **Menu** front-panel button.
- **16.** Press the **Source** lower-bezel button.
- 17. Select the AC Line trigger source on the side-bezel menu.
- **18.** Determine the mean value by pressing the front-panel **Measure** button, the lower-bezel **Select Measurement** button, and the side-menu **Mean** button. The mean value should appear in a measurement pane at the bottom of the display.
- **19.** Subtract the mean value from the offset value. Enter the difference in the test record (e.g. 1.0 V 997.3 mV = 2.7 mV).
- **20.** Repeat the procedure for each volts/div setting shown in the test record.
- **21.** Change the impedance to 1  $M\Omega$  and repeat steps 5 through 20.
- **22.** Repeat steps 3 through 21 for each channel of the oscilloscope that you want to check.

# Check Sample Rate and Delay Time Accuracy

This test checks the time base accuracy.

1. Connect the output of the time mark generator to the oscilloscope channel 1 input using a 50  $\Omega$  cable.




- 2. Set the time mark generator period to 80 ms. Use a time mark waveform with a fast rising edge.
- **3.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings; push the **Menu Off** button.
- **4.** Push the channel **1** button.
- 5. Set the impedance to  $50 \Omega$ . On some models, push channel 1 button (1) and then push the **Coupling** lower-bezel button. Push the **50**  $\Omega$  side-bezel button. On other models, push the lower-bezel **Impedance** button, if needed, to select **50**  $\Omega$ . Push the **Menu Off** button.
- **6.** If adjustable, set the time mark amplitude to approximately  $1 V_{p-p}$ .
- 7. Set the Vertical SCALE to 500 mV.
- 8. Set the Horizontal SCALE to 20 ms.
- **9.** Adjust the Vertical **POSITION** knob to center the time mark signal on the screen.
- 10. Adjust the Trigger LEVEL knob as necessary for a triggered display.
- 11. Adjust the Horizontal **POSITION** knob to move the trigger location to the center of the screen (50%).
- **12.** Turn the Horizontal **POSITION** knob counterclockwise to set the delay to exactly **80 ms**.
- 13. Set the Horizontal Scale to 400 ns/div.
- **14.** Compare the rising edge of the marker with the center horizontal graticule line. The rising edge should be within ±1 divisions of center graticule. Enter the deviation in the test record.

**NOTE**. One division of displacement from graticule center corresponds to a 5 ppm time base error.

## **Check Trigger Out**

This test checks the Trigger Output.

1. Connect the Trigger Out signal from the rear of the instrument to the channel 1 input using a 50  $\Omega$  cable.



- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings; push the **Menu Off** button.
- **3.** Push the channel **1** button.
- 4. If needed, set the impedance to 1 M $\Omega$ . On some models, push channel 1 button (1) and then push the **Coupling** lower-bezel button. Push the 1 M $\Omega$  side-bezel button. On other models, push the lower-bezel **Impedance** button, if needed, to select 1 M $\Omega$ . Push the **Menu Off** button.
- 5. Set the horizontal to 4 uS/div and the vertical to 1 V/div.
- **6.** Push the front-panel **Measure** button.
- 7. Push the **Select Measurement** lower-bezel button.
- **8.** Push the  **more -** side-bezel menu button repeatedly until the **Low** side-bezel button displays.
- 9. Push Low.
- **10.** If needed, push the  **more -** side-bezel button repeatedly until the **High** side-bezel button displays.
- 11. Push High.
- **12.** Record the high and low measurements (e.g. low = 200 mV and high = 3.52 V).
- 13. Repeat the procedure, using 50  $\Omega$  instead of 1 M $\Omega$  in step 4.

This completes the performance verification procedure.